Fraud Accounts Identification Modelling on Multi-Platform E-Commerce

Authors

  • Grawas Sugiharto School of Electrical Engineering and Informatic Bandung Institute of Technology Author
  • Yudistira Dwi Wardhana Asnar School of Electrical Engineering and Informatic Bandung Institute of Technology Bandung Author

Keywords:

Cybercrime, E-Commerce Fraud, Naïve Bayes, decision tree, K-NN, multi-platform

Abstract

Nowadays, cybercrime is increasingly prevalent in society. Based on data compiled by the Indonesia National Police, the number of cybercrimes increases by 6.46% annually, with online fraud as the most reported crime with 7.892 cases or 44.40% out of the total cases handled. The modus operandi in online fraud primarily uses manipulated profile account to gain the victims' trust. Therefore, it is necessary to have a common detection model for fraud accounts on multi-platform e- commerce to avoid online fraud. This research uses the Naïve Bayes classification, Decision Tree, and K-NN as the modeling algorithms. The classification test result showed that the optimal performance with the highest accuracy differs among the platform. The green platform reaches the highest accuracy using the K-NN algorithm (90.51%), the red platform went to the optimal performance using the Decision Tree algorithm (96.89%), and the multi-platform reached the optimal performance using the Naïve Bayes algorithm (90.02%).

References

[1] P. Bagian Operasional Dittipidsiber, “Database kejahatan siber 2015 - 2018.” Bareskrim Polri, Agustus 2019.

[2] C. Teoh dan A. K. Mahmood, “National cyber security strategies for digital economy,” Journal of Theoretical and Applied Information Technology, vol. 95, hlm. 6510–6522, 2017, doi: 10.1109/ICRIIS.2017.8002519.

[3] I. iPrice, “Daftar 50 Website & Aplikasi E-Commerce di Indonesia 2019,” Peta E‑Commerce Indonesia, Nov 07, 2019. https://iprice.co.id/insights/mapofecommerce/ (diakses Nov 07, 2019).

[4] G. T. Sahid, R. Mahendra, dan I. Budi, “E-Commerce Merchant Classification using Website Information,” dalam Proceedings of the 9th International Conference on Web Intelligence, Mining and Semantics - WIMS2019, Seoul, Republic of Korea, 2019, hlm. 1–10. doi: 10.1145/3326467.3326486.

[5] H. Zhou, G. Sun, S. Fu, W. Jiang, dan J. Xue, “A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data Analytics,” Computers, Materials & Continua, vol. 60, no. 1, hlm. 179–192, 2019, doi: 10.32604/cmc.2019.05214.

[6] S. Luo dan S. Wan, “Leveraging Product Characteristics for Online Collusive Detection in Big Data Transactions,” IEEE Access, vol. 7, hlm. 40154–40164, 2019, doi: 10.1109/ACCESS.2019.2891907.

[7] A. Saprudin, “Wawancara strategi penanggulangan kejahatan siber terutama pada online fraud,” Oktober 2019.

[8] Tokopedia, “Rekening Bersama | Tokopedia Kamus,” Nov 12, 2020. https://kamus.tokopedia.com/r/rekening-bersama/ (diakses Nov 12, 2020).

[9] Tokopedia, “Penyebab Toko Dimoderasi - Pusat Seller Tokopedia,” Pusat Seller, Agu 26, 2019. https://seller.tokopedia.com/edu/penyebab-toko-dimoderasi/ (diakses Nov 12, 2020).

[10] Bukalapak, “Tanya Jawab - Cara Melaporkan Akun yang Melanggar,” Bukalapak, Nov 12, 2020. https://www.bukalapak.com/bantuan/pelanggaran/pelanggaran- akun%20/cara-melaporkan-pelanggaran-akun (diakses Nov 12, 2020).

[11] G. Sugiharto, “Dataset Green Platform Before Preprocessing,”

Penelitian Machine Learning, Mei 18, 2021.

http://bit.ly/green_raw2021 (diakses Mei 18, 2021).

[12] G. Sugiharto, “Dataset Red Platform Before Preprocessing,”

Penelitian Machine Learning, Mei 18, 2021.

http://bit.ly/red_raw2021 (diakses Mei 18, 2021).

[13] G. Sugiharto, “Dataset Green Platform After Preprocessing,”

Penelitian Machine Learning, Mei 18, 2021.

http://bit.ly/green_pre2021 (diakses Mei 18, 2021).

[14] G. Sugiharto, “Dataset Red Platform After Preprocess,” Penelitian Machine Learning, Mei 18, 2021. http://bit.ly/red_pre2021 (diakses Mei 18, 2021).

Downloads

Published

2025-10-15

How to Cite

Fraud Accounts Identification Modelling on Multi-Platform E-Commerce. (2025). Journal of Leadership and Staff, 1(2), 177-186. https://ejurnal-copus.sespimpolri.id/jls/article/view/60